Sol-gel synthesis, micro-Raman studies and magnetic characterization of ϵ -Fe₂O₃ micro- and nanoparticles embedded in a SiO₂ matrix

J. López-Sánchez ^{1,2}, A. Serrano ³, A. Muñoz-Noval ⁴, L. Pérez ¹, M. Abuín ^{1,5}, A. del Campo ⁶, J. de la Figuera ^{2,7}, J.F. Marco ^{2,7}, N. Carmona ^{1,2}, O. Rodríguez de la Fuente ^{1,2}

 ¹ Dpto. de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
² Unidad Asociada IQFR(CSIC)-UCM, 28040 Madrid, Spain
³ SpLine, Spanish CRG beamline at the ESRF, F-38043 Grenoble, CEDEX09 France and Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
⁴ Department of Applied Chemistry, Hiroshima University, Higashihiroshima, Hiroshima, 739-8527, Japan
⁵ CEI Campus Moncloa, UCM-UPM, 28040 Madrid, Spain
⁶ Instituto de Cerámica y Vidrio, CSIC, 28049 Madrid, Spain
⁷Instituto de Química-Física "Rocasolano", CSIC, 28006 Madrid, Spain

jesus.lopez@ucm.es

ABSTRACT

The ε -polymorph of iron (III) oxide shows very attractive properties, among them, its giant coercive field (around 2 T at room temperature, RT), its magnetoresistance or its millimeter wave ferromagnetic resonance (FMR) [1]. For these outstanding properties, ε -Fe₂O₃ nanoparticles are good candidates for the development of applications in fields such as electronics, as well as in a new generation of hard-magnets without rare-earth compounds. In the present work, we describe different synthesis routes in order to obtain ε -nanoparticles embedded in a SiO₂ matrix in powder form and as films deposited on Si(100) [2]. We have been able to fabricate ε -Fe₂O₃ nano- and microparticles, depending on the sol-gel path followed and the subsequent final thermal treatment chosen. We have investigated the magnetic properties spanning a wide range of temperatures and an extensive structural and morphological characterization of the samples is also carried out by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Confocal Raman Microscopy (CRM) [2,3]. Specially, CRM is employed in order to identify the ε -phase from other iron oxides. In this sense, the evolution of the Raman spectra as a function of the temperature is analysed and compared in each case. Nevertheless, other phenomena are also studied, such as the structural transition from ε -phase to α -phase varying the output laser power, or the behavior when the material undergoes a Néel transition at 500 K [2].

REFERENCES

[1] L. Machala, J. Tucek, and R. Zboril, Chem. Mater., 23, 2011, 3255

[2] J. López-Sánchez, A. Serrano, A. del Campo, M. Abuín, O. Rodríguez de la Fuente, and N. Carmona, Chem. Mater. 28, 2016, 511

[3] J. López-Sánchez, A. Muñoz-Noval, A. Serrano, M. Abuín, J. de la Figuera, J. F. Marco, L. Perez,
N. Carmona and O. Rodríguez de la Fuente, "accepted in RSC Advances"